MIT Contributes to Success of Historic Fusion Ignition Experiment


Success of Historic Fusion Experiment

MIT has contributed to the success of the ignition program on the Nationwide Ignition Facilty for greater than a decade by offering and utilizing a dozen diagnostics, applied by MIT PhD college students and workers, which have been essential for assessing the efficiency of an implosion, just like the one pictured. Credit score: Picture courtesy of Lawrence Livermore Nationwide Laboratory.

MIT students are part of the large team that achieved fusion ignition for the first time in a laboratory.

Researchers around the world have been engaged in attempts to achieve fusion ignition in a laboratory for more than half a century. It is a grand challenge of the 21st century. An approach called inertial confinement fusion (ICF), which uses lasers to implode a pellet of fuel in a quest for ignition, has been the focus of the High-Energy-Density Physics (HEDP) group at MIT’s Plasma Science and Fusion Center. This group, including nine former and current MIT students, was crucial to a historic ICF ignition experiment performed in 2021. The results were published this year on the anniversary of that success.

On August 8, 2021, in their quest to produce significant fusion energy, scientists at the National Ignition Facility (NIF), Lawrence Livermore National Laboratory (LLNL), used 192 laser beams to illuminate the inside of a tiny gold cylinder encapsulating a spherical capsule filled with deuterium-tritium fuel. Even though researchers had followed this process many times before, using different parameters, this time the ensuing implosion produced a historic fusion yield of 1.37 megaJoules, as measured by a suite of neutron diagnostics. These included the MIT-developed and analyzed Magnetic Recoil Spectrometer (MRS). This result was published in the journal Physical Review Letters on August 8, the one-year anniversary of the ground-breaking development, unequivocally indicating that the first controlled fusion experiment reached ignition.

A plasma ignites when the internal fusion heating power is high enough to overcome the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop that very rapidly increases the plasma temperature. This is governed by the Lawson criterion, named after John D. Lawson who developed the concept in a classified 1955 paper. In the case of ICF, ignition is a state where the fusion plasma can initiate a “fuel burn propagation” into the surrounding dense and cold fuel, enabling the possibility of high fusion-energy gain.

“This historic result certainly demonstrates that the ignition threshold is a real concept, with well-predicted theoretical calculations, and that a fusion plasma can be ignited in a laboratory,” says Johan Frenje, the HEDP Division Head.

By providing and using a dozen diagnostics, implemented by MIT PhD students and staff, which have been critical for assessing the performance of an implosion, the HEDP division has contributed to the success of the ignition program at the NIF for more than a decade. The hundreds of co-authors on the paper attest to the collaborative effort that went into this milestone. MIT’s contributors included the only student co-authors.

“The students are responsible for implementing and using a diagnostic to obtain data important to the ICF program at the NIF, says Frenje. “Being responsible for running a diagnostic at the NIF has allowed them to actively participate in the scientific dialog and thus get directly exposed to cutting-edge science.”

“Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment” by H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), 8 August 2022, Physical Review Letters.
DOI: 10.1103/PhysRevLett.129.075001

Students involved from the MIT Department of Physics were Neel Kabadi, Graeme Sutcliffe, Tim Johnson, Jacob Pearcy, and Ben Reichelt; students from the Department of Nuclear Science and Engineering included Brandon Lahmann, Patrick Adrian, and Justin Kunimune.

In addition, former student Alex Zylstra PhD ’15, now a physicist at LLNL, was the experimental lead of this record implosion experiment.

Supply hyperlink

Leave a Comment